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ABSTRACT

A model is developed for relating continuous review

inventory policies for repair parts to system availa-

bility. The system consists of S identical unit systems,

each of which is a series of k-out-of-n structures. Unit

system states are zero or one. An optimal cannibalization

policy is assumed. Under this assumption the number of unit

systems up is always the maximum possible for any given

vector of b,ckorders for the N part types in the system.

The distribut ion of backorders under a (Q,r) policy with

Poisson demands for each. part type is used to derive

expressions for system availability as functions" of the

Q, r vectbrs. For simplicity it is assumed that order

quaitities Are set by an operating level in terms of days

of supply. A numerical technique is presented for finding

the vector of reorder points (safety levels) which mini-

mizes the expected cost of on hand inventory subject to one

of two alternatiV availability constraints.
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LIST OF SYMBOLS AND ABBREVIATIONS

Uk A random variable taking the values zero or one
indicating the state of the kth unit system

Z A random variable indicating the number of
operational unit systems

Z* The value of Z after an optimal cannibalization

S The total number of unit systems

E(.) The expected value operator

As Required availability with respect to supply
support, defined as a required ratio of E(Z)
to the total number of unit systems S, given
that failed parts are replaced instantaneously
if there are spares on hand-

P min(k) Required asLsurance that at least k unit
systems are up, given that failed parts are
replaced instan:taneously if. there are spares
on hand

Xki The ith locatioit where a part is installed on
the kth unit sy~item

n
Ak {Xki I = The set of all locations where parts

i=l are installed on the kth unit system

A Li Ak = The set of nS locations on all unit
k=l systems where parts are installed

X ki A random variable taking the values zero or one
indicating whether or not there is a working

part of the proper type installed in the ith
location on the kth unit system.

Kk A random vector whose components are Xkj
i = l,...,n indicating the states of

all the locations requiring parts on the kth
unit system

X (Xl,...,X), random vector indicating the
states of all locations requiring parts in the
whole system

Xk The set of possible values of Xk
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XThe set of all possible values of X

The empty set

FSN. the jth part type or the jth Federal Stock
Number, j =I N

{FSNj} = The set of different part types
j=l installed on each unit system

N The number of different types of parts or number
of different FSN's installed on each unit
system, i.e., N = the size of 1

G(FSN.) The subset of each Ak consisting of locations
requiring part type j

a. The size of G(FSNj), i.e., the number of appli-
cations of part type j on each unit system

b. The minimum number of FSNj which must be working
on a unit system if it is to be operational

W. A random variable indicating the number of
working parts of type j in the whole system

W A random vector, (WI,...,WN), where W is
defined above

Y. A random variable indicating the number of
backorders for part type j

Y A random vector, (Y ,...,YN where Yj is
determined above "

The indicator function of the set K at thepoint X

t Time

Procurement lead time

Q Order quantity

r Reorder point

IP Inventory position

i yj;rj) The probability mass function for backorders
J J J for part type j, given that the reorder point

is ri
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p(U;pr) The Poisson probability mass function at u,
given that the mean is pT

P(u-;pT) The complemhentary cumulative Poisson distribu-
tion function at u, given that the mean is pT

pj The failure rate: fot part type j

LaSajpj , the pooled failure rate for all parts
of type j in the whole system, where La
is defined below

L Activity level multiplier used to account fora varying levels of usage of the system

Lo Operating level in terms of days or months of
supply 'used to set order quantities
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I. INTRODUCTION

A. BACKGROUND

In the management of logistic support for weapons

systems a significant problem in resource allocation is

the determination of optimal inventory policies for repair

-parts. Inadequate stocks of repair parts result i-i low

system availability. Stocks sufficient to insure with

high probability that any part will be immediately avail-

able when needed my tie-up more resources than are

justified.

An indication of the concern of the logistics manager

with this problem is the following statement from the

revised General Objective No. 1 for the Navy Supply Systems

Command: "For technical material, optimum support is that

which minimizes downtime of weapons systems due to lack of

repair parts and components." [Ref. 1] In order to accom-

plish this objective, techniques are needed for relating

repair parts inventory policies to weapons systems

availability.

The mathematical models designed to deal with the impact

of repair parts shortages have usually been formulated as

a minimization of total cost, where the total cost includes

ordering, holding, and backorder costs. In theory the

backorder costs are a measure of the impact of shortages on

system availability. A difficulty in practice is that

backorder costs are hard to estimate. One technique for
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finding a value of the shortage cost is to impute it based

on a required maximum probability Pout of being out of

stocki See Deemer and Hoekstra [Ref. 2, p. 5) for a dis-

cussion of this technique. The required value of Pout is

determined by management judgement. This judgement pre-

sumably includes some intuitive consideration of the effect

of repair parts shortages on system availability.

The total cost minimization formulation does not, how-

ever, permit any direct correlation of inventory policies

and system availability. Inventory policies computed using

that formulation are determined for each part independent

of all other parts. System availability is, however, a.

function of (Q,r) = (Ql,rl),...,(QN,rN). Therefore, if

we wish to correlate inventory policies to system avail-

ability, we need a multi-item model rather than one which

deals with each item one at a time.

There do exist ah.umber of techniques for explicitly

correlating systeavailability and single period inventory

policies. One of these is the optimal redundancy approach

discussed in Chapter 6 of Barlow and Prochan [Ref. 3]. The

problem discussed there is one where at the beginning of

the period there is a quantity n. of .each part type j

on hand, and resupply is not avaiJable until the end of

the period. The object is to determine the value of each

nj so that system availability is maximized subject to

some cost constraint or: alternatively, to minimize the

cost of achieving a required availability. The cost of the

* 12



parts inventory may be interpreted as dollars, weight,

volume or some other measure of the amount of a Presource"

which is used up by the inventory.

B. GENERAL NATURE OF THE MODEL

The approach taken here is to apply the redundancy

optimization ideas to a continuous review inventory sit-

uation. In particular the model addresses the problem

of optimal parts inventory policies in support of a weapons

system at the direct support echelon. The objective

function to be minimized is the expected cost of on hand

inventory. The constraint is a system availability re-

quirement, which may be in one of two alternative forms.

The first is that the expected number of unit systems up

must be greater than or equal to a required fraction of

the total number 6f unit systems. The second form of

the constraint is that the probability that at least k

unit systems are up must be equal to or greater than a

required assurance level.

The model is an idealization of the repair parts

supply support furnished by the direct support maintenance

unit for the population of a particular major item in an

operational Army unit. The system consists of S identical

unit systems, which might b'e tanks, aircraft, howitzers,

or some other set of equipments of the same make and

model.

13



C. ASSUMPTIONS OF THE MODEL AND THEIR IMPLICATIONS

Before turning to the formal description of the model

we shall discuss some of the important assumptions and

their implications here.

1. The Inventory System is Single Echelon

To simplify the problem we assume that the supported

military unit does not carry a stock of repair parts, but

that parts are immediately available from the direct support

maintenance unit if there is stock on hand at the time a

demand occurs. The inventory system thus is single echelon.

2. Procurement Lead Time is Constant

The procurement lead time (order and ship time) is

assumed to be constant for each part type, where part type

indicates a particularFederal Stock Number. Lead times mayi

however, be different for different part types. We further

assume that the source of supply is never out of stock.

Thus, the model ignores variability of lead times and the

possibility of t#ducing lead times by using a higher requi-

sition priority.

3. Unit System State Values are Zero or One

The supported system consists of S identical unit

systems. Each unit system is assumed to exist in one of

exactly two states depending upon the states of the in-

stalled parts: either it is up, i.se., it is fully capable

of operating satisfactorily; or it is qn., i.e., totally

ineffective. This assumption means th&w 'the possibility

that the unit system may be partially effective is not

14



considered. Actual equipment does exist _n partially

effective states. For example, if the 50-caliber machine

gun on a tank is not working, the capability of the tank

is reduced in some of its roles, but it is obviously not

totally ineffective if all other components of the tank

are working. The zero-one assumption is made for mathemati-

cal simplicity. The two state categorization is not too

different from the equipment serviceability code (ESC)

ratings currently used within the Army for determining the

materiel readiness of Army units. Possible ESC ratings are

green, meaning fully operational and capable of operating

in combat for 60 days; amber, meaning fully operational and

capable of operating in combat for 30 days; and red, mean-

ing not fully operational. We have simply dropped the amber

category.

4. Compoient Part State Values are Zero or One

Similar to the zero-one assumption for each unit

system two possible states are assumed for each installed

part: either it is working or' it has failed. Thus the

,part is 100 per cent effective or totally ineffective.

5. The Unit System is a Series of k-out-of-n Structures

As mentioned in Section 3 above, the state of 'a

unit system is determined by the states of its component

parts. If there are aj parts of. type j initially

installed on each unit system, it is assumed that thore is

a number b. equal to or less than a. such that at least

bj parts of type j must be working if the unit system is

15



to be up. If the number of working type j parts is less

than b., the unit system will be down. Further we assume

that, if the number of working type j parts is equal to

or greater than b. for all j, then the unit system will

be up. These assumptions may be summarized by saying that

the unit system is a series of k-out-of-n structures, as

defined by Birnbaum, Esary and Saunders [Ref. 4, p. 581.

Our b. corresponds to these authors' k and our a. toJ J

their n.

6. The Number of Unit Systems Up is the Minimum of the

Number Up with Respect to Each Part Type

If Z is the number of unit systems up at some

arbitrary time and Z is the number which would be up if

all non-working parts other than. type j were replaced

by working parts, then Z is called the state of the

system, and Z. is called the state of the system with

respect to part type j. We assume that at any time t the

state of the system Z equals the minimum over j of the
Z..

7. An Optimal Cannibalization Policy is Observed

Perhaps the most significant assumption of the model

.veloped here is that a policy of optimal cannibalization

is observed. By optimal we mean that given any vector

W = (W ,...,W.), where Wj denotes the number of working

parts of type j, after the 'cannibalization operation the
maximum possible number of unit systems will be up. The

mathematical structure of the supported system is an

adaptation of the .structure of the cannibalization model of

16
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Hirsch, Meisner and Boll (Ref. 5]. The reason for using

this structure is that, given any vector Y (Y

where Y. denotes the number of backorders of part type

j, there is a unique number systems up. This would not be

the case if cannibalization were not al.lowed. Consider,

for example, a system in which each unit system has two

parts of type j installed, and both of these must be

working if the unit system is to be up. Suppose there are

two backorders for this part type. This means that there

are two non-working parts of type j in the system. If

one of these were on one unit system and the other were

on a difierent unit system, then the number of unit systems

down for this part type would be two. If, however, both

were on one unit system, then only one unit system would

be down for this part type. Under a policy of optimal

cannibalization there would always be only one unit system

down for this backorder situation. Since the probabilities

for the number of systems up used in this model are com-

puted based on the probability distributions of the Y.

the cannibalization assumption is an essential feature of

the model. The degree to which cannibalization is actually

used to increase system availability in practice depends

upon command policy and the practicality of taking parts

from one unit system to make another operational. If the

supported unit is spread-out geographically, it may-not be

feasible to cannibalize. Also the maintenance effort in

removing and replacing parts under the cannibalization

17



operation may overload the capability of the maintenance

organization. Nevertheless, some cannibalization may be

the best strategy for optimizing system availability when

there are constraints on the quantities of repair parts

the .maintenance unit can carry.

8. The Demand Distribution for Each Part Type is Poisson

The demand distribution for each part type is assuned

to be Poisson with mean equal to the product of the failure

rate for the part type times the number of parts of that

type in the system. The failure rate of each part type is

assumed to be the same in all of its applications. The

Poisson assumption implies that the mean time between

failures of a given part type is exponentially distributed.

It, is true that the exponential distribution may be a poor

fit for the mean time between failurewhere an individual

part is installed and replaced with a new part of the same

type immediatcly upon failure, particularly when the part

is subject to wearout. Cox [Ref. 6, p. 77] indicates how-

ever, that the pooled output of a number of renewal processes

tends to, have the properties of a Poisson process as the

number of renewal processes being pooled gets large. Con-

sequently, the Poisson assumption may be a good approximation

when the total number of parts of a given type in the

system is large. Another implication of the assumption is

'that the distribution of demands is not affected by the

number of unit systems down. This in turn implies that an

inoperable unit system continues to generate part failures

18



even after it has gone down. Errors introduced by this

assumption will not be too great if the availability rate

is reasonably high or if failure rates are estimated on

demand histories over aperiod when the availability rate

was about the same as the :cequired availability rate for

the period for which inventory policies are being computed.

9. Demand Rates are Linear with Activity Levels

The parameter in the demand distribution is assumed

to be a time rate. As discussed by Soland [Ref. 7, p. 45],

the natural parameter of the demand process may be miles

driven, rounds fired, or some other measure of the usage

or activity level of the system. The device used in the

model to account for this fact is an "activity level"'

multiplier La for the pooled demand rates for each part

type. Suppose, for example that rounds fired were the nat-

uraI parameter for the demand process. Further suppose

that a certain number of rounds were fired on the average

by each unit system per month during the period when

demand data were accumulated for estimating failure rates.

Now suppose that during the period for which inventory

policies are being computed that the programmed number of

rounds per unit system per month is doubled. Then the La

would be two, and the failure rate estimates for each part

type would be doubled. Use of this device assumes that

failure rates are linear with the level of usage. This

assumption is not in general true, but any more realistic

means of handling this problem would complicate the model.
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For part types nct subject to aging, this assumption is

probably fairly good.

10. Parts are Replaced Immediately upon Failure

This model assumes that each part is replaced

immediately upon failure with zero replacement time if

a spare part is on hand at the time of failure. Also, if

backorders exist for a particular part type, the failed

part will be installed immediately upon receipt by the

maintenance unit. Of course, these assumptions are not

true in the "real world." To account for the fact that

repair times are finite the following-procedure could be

used. First estimate the availability which we would

expect to achieve if there never were any shortage of repair

parts. Call this estimate the availability with respect

to maintenance. Call the estimated availability predicted

by this model the availability with respect to supply

support. Then by taking the product of these two estimates

we should have a fair estimate of the overall availability

to be expected given the inventory policies and the repair

capabilities of the maintenance unit. In any case, the

reader should keep in mind that availability values computed

with this model need to be corrected for down time due to

non-zero repair times.

20



II. M2THEMATICAL MODEL

A. FORMAL DESCRIPTION OF THE SYSTEM STRUCTURE

The system consists of S identical unit systems. On

each unit system k there are n loci where parts are

installed. Let the Xki denote the ith locus on the kth

unit system and let the set

n
Ak = {Xkii

denote the set of loci on the kth unit system. Let the set

A _. Ak
k=l

denote the set of all loci on the S unit systems. Let

Xki be a random variable indicating the state of the ith

locus on the kth unit system, such that

Xki = 1 if locus Xki contains a working part of
the type required in that locus,

= 0 if locus Xki fails to contain a working
part of the required type.

Now = kl' Xkn) is a vector of zeros and ones which

describes the state of the kth unit system. The possible

values of k correspond to the vertices of the unit cube

in Euclidan n-space. Let Xk denote the set of all pos-

sible values of Xk. The size of Xk is 2n Let the

random vector

x = (XI,-..,X s )

21



be an nS-component vector indicating the state of the

entire system. Let * denote the set of all possible

values of X. The size of X is 2ns. Let the set

n
= {FSNj)=1

Sj=1

represent the set of different part types installed in the

n loci of each unit system. -Further let G(FSNj) be the.

subset of Ak which has as elements all those loci requirr

ing part type FSN. It is assumed that if locus Aki G(FsNj) ,

then Xki = 1 if and only if a working part of type FSNj

is installed in that locus This assumption implies that

different FSN's are not substitutes for one another. Let

the size of G(FSNj) = aj, i.e., the number of applications

of FSNj oneach unit system is aj. Assume that for each

j there exists a number bj such that
JI

1. 1 < bj aj;

2. If the number of working parts of type FSN. in-

stalled on unit system k is equal to or greater

than bj, the unit system will not fail due to

FSN.;

3. If the number of working parts of type FSN. in-

stalled on unit system k is less. than b., the

unit system will fail due to FSNj; and
4. b. is independent of bi  for all i j.

fJ 1

Let the state of the unit systemwith respect to FSNj,

denoted Ukj, be defined as the state in which all loci

22



not in the set G(FSNj) have working parts installed.

In other words Ukj describes the state of the unit

system if FSN. were only part type subject to failure.

If Wkj is a random variable indicating the number of

working parts of type FSN. installed on unit system k,

then

U =. if Wkj k bj,

= 0 otherwise.

Now let the state of the system with respect to PSN
S

denoted Zj, be defined- as E U kj. Zj indicates the num,

ber:of unit systems which would be operational for a given

set of values of Wkj, k = l,...,S f the only fallable

part type were FSN..

For a given value of the system state vector X it

may be possible to increase the value of Z by cannibali-

zation. We assume that for any value of X cannibalization

will be effected -n such a way that the maximum value of Z

for that X will be achieved. See Hirsch Miesner and Boll

[Ref. 5, p. 336-342] for a detailed description of the

cannibalization operation for the type of structure being

discussed here. Let Z* denote the state of the system

after an optimal cannibalization, and let Zt denote theJ

state of the system.with respect to FSN. under a policyJ

of optimal cannibalization.

Note that Zt may be considered to be a function of

Wj the number of working parts of type j, since Zt is

23



the value of the number of operational unit systems after

an optimal .cannibalization when the only part failures are

at those loci associated with part type j. It is assumed

that Z*(Wj) is a monotone non-decreasing function of W.

Let K(Wj,z) denote the set of values of the number of

working parts W. such that the value of Zt is at least

as great as z,, i.e.,

K(Wjz) {Wj: 0, < W. < Saj and Zt(Wj) z}.

Note that

'K(Wj,0)CK(WjI)C:... (:K(WjS)CK(WjS+I), j=I;,...,N;

and sirice max Z* = S,J

K(WjS+l) = 4)

The largest Value of z such that K(Wj,z) 4 is S.

Further note that the minimum value of W. such that Z

Z* = z i's zb. since b. is the minimum number of part

type j needed on each unit 'system if that unit system is

to be operational, in symbols

zb = min {wj: wieK(Wjz)}

Let KeX be an arbitrary set where X is tbh6 set of all

system state vectors X. The indicator function IK isKJ
defined for all K and X as follows

I-(X)= 1, if XeK,

= 0, if- XkK.
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II

Now let us use the symbol {w > zbj} to denote the set of

all X such that wj >_ zbj, i.e., {Xe*: wj(X) zb.

Hirsch, Meisner and Boll show (using somewhat different

notation) that if Z* = min Zt, then
J

S S N
k* N =ib - z j
k 1 ) {wj->zb k=l j=l zbj}

j=l

and the authors call this the "representation theorem" [Ref.

5, p. 349]. If S = 1, i.e., we have only one unit system

then Z* = U, and U = 1 if and only if each one of the

indicators I w=b} is equal to 1. The structure of

the unit system in this model is thus a coherent structure

in the definition of that term given by Birnbaum, Esary and,

Sauxders [Ref. 4, p. 61]. Further each unit system may

be considered to be a k-out-of-n structure with respect

to each part type j, where a k-out-of-n structure is one

which has n parts of a single type and is operational if

and only if at least k out of the n parts are working.

Also, we can consider each unit system to be a series system

composed of N k-out-of-n structures, where the k's are

the b.'s and the n's. are the a.'s.

B. CORRELATION OF INVENTORY POLICIES AND SYSTEM AVAILABILITY

Consider now the effect of inventory policies on the

expected value of the number of operational unit systems

E(Z). If there were an infinite number of repair parts of

each type available, the value of X would always be
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1 (ll,...,1), since it is assumed that each part is

replaced immediately upon failure as long as spares are

available, and the state of the system Z would always

be S. There are in fact various constraints on the ability

of the support unit to carry inventories of parts. The

result is that from time to time demands will occur for

which no replacement part is immediately available. For

any state vector X, denote the state vector after an

optimal cannibalization as X* and the value of Z after

cannibalization as Z*. Then

X*(t) = (X* F()..X*,n(t)),I t k 0,

is a stochastic process where for each fixed: t, Xki is

a random variable taking the values zero or one. Now for

each subset, K of M, the set of possible values of X,

let Pt(K) denote the probability that X*(t) is an ele-

ment of, the set K, ie.,

Pt(k) = Pr{X* (t) eK}, KCO

As shown by Hirsch,. Meisner and Boll the probability

distribution defined above concentrates all of its mass on

the set-of maximum points MX, which are the possible

vectors X*, the state vector after an optimal cannibali-

zation. Any vector X in which the number of working

parts of each type is given by the vector W can be

transformed into another vector X' which has the same

value of W. Thus, since an optimal cannibalization yields
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the maximum value of the system structure function Z for

a given state vector X, there is a unique value of the

state of the system after an optimal cannibalization Z*

for each value of the vector W = (WI,...,WN). The set of

all X corresponding to a given W vector is called an

equivalence class, and the set Mx is a substet of this

equivalence class where Z as a function of X takes its

maximum values over the equivalence class. We denote each

X in MX as X*. To describe the variation in time of

the system state function Z, set

Z*(t) = Z(X*(t)), t ;- 0,

and we note that the probability distribution of Z*(t) is

given by

Pr{Z*(t) I z} = Pr{Z*(x*(t)) z}

= Pt {X: Z*(x) Z}

Let W.(t) represent the number of working spares of

type j at time t. Under the assumption that Z* = min Z*,i j,
we have immediately from the representation theorem that

S S N

k=i IN {W- (t)_kb k=l j=I ( Ij(t)>_kbj}

j=l

Assume that

1. For each index j = 1,...,N, the loci in which

parts of type FSN. occur are indistinguishable in their
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effects on the lifetimes of the parts installed in them,

i.e., the failure rate at each instant of a given part type

FSNj does not depend on the locus in G(FSNj) in which

the part is installed, nor on the particular sequence of

loci through which it has passed.

2. Parts operate independently, i.e., the lifetime of

a given part is not related to the lifetimes of any other

parts. These assumptions make it reasonable to postulate

that the joint distribution of (Wl(t),...,WN(t)) does not

depend upon the particular cannibalizations involved in the

process {Z*(t), t . 0 and that the N stochastic pro-

cesses

{Wl1 M 1 t Z-_0},. , {wN(t),1 t Z'_0}

are mutually independent. Thus the expected number of unit

systems up under optimal cannibaliz&tion at time t,

E,Z*(t)), is given by

S N
E(Z*(t)) = Z 1 E[I{w(t) kb

k=l j=l _ j

S N
E E ff Pr{W (t) > kb.

k=l j=l

Further, the probability that Z*(t) equals at least z

is given by

N
Pr{Z*(t) > z} = H Pr{W.(t) _ zb.

j=l
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Now let Y (t) be a random variable denoting the number

of backorders for part type FSN. at time t. Under the

assumption that every failed part is replaced immediately

by a working part from the inventory of spares, we see that

Wj(t) = Sa - YM(t)

and

{W (t) -kb {Sa -Y(t) kbj = {Y.(t) . Sa -kbj}.

Hence

N
Pr{Zi'(t) .k} =J iPr{Y.(t) .Sa. -kbj}

j=1l

and

S N
E(Z*(t)) = E Z Pr{Y.(t) > Sa. - kb.}.

k=l j=l -- - :

We assuiie that the inventory system is continuous review

with a (Qj,rj) policy for each FSN, where Qj denotes

order quantity and r. denotes reorder point. We also

assume the lead time demand is Poisson distributed. Hadley

and Whitin [Ref. 8, p. 184] show that under a (Q,r) policy

when the lead time demand is Poisson with parameter pT

that the probability that there are y backorders at an

arbitrary time t under steady conditions may be derived

as follows. The inventory position, IP, is defined as the

stock on hand plus stock on order minus backorders. The

IP varies between r+1 and r+Q, where r is defined in

terms of the IP. Further, Hadley and Whitin show that the
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probability that the IP is in any state r+j, j=l,...,Q

is l/Q. Thus if the inventory system is in state r+j at

time t-T, the probability of y backorders at time t

equals the probability that y+r+j demands occur during

the period (t-T) to t for y>0. The probability that

y=0 is the probability that the demand during (t-'r,t)

is less than or equal to r+j. Hadley and Whitin do not

make this distinction for y=0; consequently, the formula

they derive is not valid for y=0. When 0 is substituted

for y in the expression they derive the resulting value

is the probability that y=0 and on hand inventory = 0.

"Terms for the probability that y=0 and on hand inventory

is greater than zero are left oilt of their expression. The

e6pression- JIMlely and Whitin derive is

Q y+r+Q
= (l/Q) Z p(y+r+j;pT) = (l/Q) 1 p(u;pT)

j=l u=y+r+l

= (l/Q)[P(y+r+l;pT) - P(y+r+Q+l;pT)],

where p(u;pT) is the Poisson probability mass function with

parameter pT at the point u for u = 0,1,2,...; and

P(u;pT) E p(v;pT) is the Poisson complementary cummulative
v=u

distribution function. The above expression is valid y

greater than zero. For y = 0,

Q r+j
' (0) = (E/Q) Z p(u;pT)

j=l u=0
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Q
= (l/Q) [ [1 - P(r+j+l;pc)]

j=l

Q
= 1 - (l/Q) Z P(r+j+1;pT).

j=l

We assume that the pooled demand rate pj for all

parts of type j is given by

Pj= LaSaj j

where La is the activity level multiplier discussed ift

Section I,, S is the number of unit systems, aj is the

number of applications of part type j on each unit system,
!A

and pj is the failure rate for part type j when LLa

is one.

Let Tj be the procurement lead time for part type j.

Demand is assumed to be Poisson distributed with parameter

pjTj. Thus in terms of *9(yj),

Sa--kbj
Pr{Z*(t) .k} = E(y-)b

J ~yj=0 1.

Also since Z*(t) = min Z(t) and the yj are assumed
j I

to be independent, the probability that Z*(t) is equal

to or greater than k is "he probability that each ZI(t)

is equal to or greater than k, i.e.,

N SAi-kb.Pr {*(t) >_ k) =1 E, i" 3 (yj).

j=l yj=O
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Now the expected value of a non-negative integer random

variable is the sum from 1 to - of the complementary

cumulative probability function; thus

OS
E[Z*(t)] = Z {Pr Z*(t) >_ k} = Z Pr{Z*(t) 1 k},

k=l k=l

since the probability that Z* (t, is. greater than S is

zero. Therefore, the expected value of the number of

operational systems in terms of, the probability mass

functions of the backorders for each part type is:

S N Sa--kb-
E(Z(t)] = H E (yj),

k=l j=l yj=0

where:

j(Yj)= (l/Q) [P(yj+rj+l) -P(yj+rj+Qj+l)], for yj>0,

and

tj(yj) = 1 - (l/Q) Z P(r.+m+l), for yj = 0.
m=l

The problem of optimum inventory policies may be formulated

as the minimization of the expected cost of on hand inven-

tory subject to one of the following constraints: fi-zst,

that the expected number of operating systems E(Z) must

be equal to or greater than some required fraction of the

total number,or, second, that the probability that at least

k of the unit systems are operational must be equal to or
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greater than a minimum assurance level. The expressions

used to relate inventory policies and these constraints

are those developed above for E(Z) and PrfZ I k}. Note

that since the expressions refer to "steady state" con-

ditions, and since optimal cannibalization is always

performed, the symbol Z will be used henceforth in lieu

6f Z*(t) and Z will indicate the "steady state" random

variable Z* (t).

It turns out that for part types with low demand rates

the optimal policy under the formulation of the problem

indicated above is not to stock these low demand items

at the direct support level, but to order them from the

source of supply as demands occur. If this Xs the case,

r will be set to -i and Q to 1. This means that an

order is placed as soon as a failure occurs. In this

situation the distribution of Yj reduces to the Poisson

distribution with parameter pjrj, since the inventory

* position is always equal to zero, and there is, therefore,

only one state for the inventory position. Hence the

probability that there are exactly yj backorders at any

arbitrary time is p(yj;pjTj).

It is interesting-to consider what would happen if

pjTj were small for all N part types, and no stock were

carried at the direct support level. Assume that each part

type were always available from the source of supply with

a procurement lead time of Tj, a constant, which might be

different for different part types. Now, if no parts are
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carried at direct support level, but are ordered. only when

-demands .odUr, i.e.-, r. -1-, -Q-j 1 for all j, then

S Sa--kb.
Rr {Z >_ k} H E p(yj;pjj),

j=l yj=O

and,

S N Saj.-kb.
E(Z) = 1 E p(yj;pjTj).

k=l j=l yj=O

The values of the above functions, can be used to estimate

the lower bounds for .E(Z) and Pr{Z >.k}, when demand

rates and procurement lead times are p j,Tj, j=i,...,N.
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III. OPTIMIZATION TECHNIQUE AND NUMERICAL ANALYSIS

A. THE COST FUNCTION

The objective function to be minimized is a cost

function of the following form:

N
E(C) =j= CjD(Qjrj)I

where

E(C) = Expected cost of on hand inventory in
dollars, cubic feet, pounds or some
other measure of a resource in short
supply,

C. = The unit cost of part type j,J

D(Qj,r.) The expected on hand inventory of part
~ type j, given order quantity X j

and reorder point rj.

'If E(C) is in dollars, the above function gives the

expected amount of funds tied up in repair parts inventory

for the system at the direct support echelon. If E(C)

were in pounds the function might represent the expected

amount of load carrying capacity of the maintenance used up

by the repair parts for the system in question.

The value of D(Qj,rj) is given by

D(Qj,rj) =(Qj+)/2 + rj - pjTj + B(Qj,r.),

where

B(Qj,rZ) = yj j (yj;Qjtrj)
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is the expected number of backorders, given the inventory

policy (Qj,rj). Hadley and Whitin [Ref. 8, p. 184] show

that

B(Q,r) = (l/Q) Z y[P<(y+r+l;pT) - P(y+r+Q+l;pT)].
y=0

B. OPTIMIZATION TECHNIQUE

1. Minimiziiig Cost Subject to a Required Expected
Number of Unit Systems Ui

Suppose it is required that the expected number of

unit systems up must be equal to or greater than AsS,

where As is the required availability with respect to

,supply support, 0 . As < 1, and S is the number of unit

systems. Further, suppose it is desired to minimize the

cost of expected on hand inventory needed to achieve

E(Z) A sS. The problem may then be stated as

NMini ize E CjD(Qj~r9
(rl,.* rN )  j=l

subject to E(Z) . As S.

Finding the optimal solution to this problem for

(Qj,rj)Y, j = I,...,N is a formidable task due to the com-

plexity of the cost function and the function for the

expected value, of Z in terms of the Qj and rj. To

simplify the problem we have chosen to set the values of

Q. by an operating level of supply in terms of days or

months of supply. Thus we set
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Q. = [pjL o + .51, if [pjLO + .5] >0,

= 1, otherwise,

where: [u] = The greatest integer equal to or less than u,

LO = The operating level of supply, e.g., one month
of supply.

The problem now becomes: given the values of Qj determined

as indicated above, find the vector (rl,... ,rN) which

minimizes the cost function subject to the required level

of availability. We shall restrict the rj to be >- 1.

After computing the Qj values, the next step in the pro-

cedure is to compute a table of values of *j(yj; rj = -1)

for all j. This table is useful in that the values of

ij (yj; rj) may be found for other values of rj as

follows:.

Yj(0; rj) = E j, (u; -1), for yj = 0,u=0

* (yj; rj) = ij(yjArj+l; -1), for yj> 0.

The number of values needed for each j depend upon the

demand rate and the accur#a1 desired in the computations.

After the table of i values is computed the next step is

to find a set ( of r. such that E(ZD),the

expected value of Z with respect to part type j, is

equal to or greater than AS, and such that Pr(Zj=S;r.)

is concave for r. > rt. Each r. must be large enough
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to insure E(Zj) L A sS since E(Zj) gives the expected

number of operating systems when every other type except j

is always in supply. E(Z) can not be greater than E(Zj)

because it is assumed that at any arbitrary time Z = min Zj.
J J"

Now E(Zj) is given by

S Sa.-kb.
E(Z = E E j(yj; r.).

k=l yj=O

Using this expression find the minimum rj such that

E(Z.) A SS. (See Appendix A for a discussion of the need

to require each Pr(Z. L_ k; r.) to be concave for rj>x_.)

After the set of initial values of the r. is found, a

marginal analysis technique similar to the approach of Karr

and Geis!e r [Ref. 9] and to one form of optimial redundancy

algorithm of Barlow and Prochan [Ref. 3, p. 166] is used to

find at each iteration the part type which yields the

greatest increase in E(Z) for the increase in the cost of

the expected on hand inventory for that part type. On the

first iteration the ratio

E(Z;r.+I) - E(Z;r.)
Aj C [Dj(r +l) - D(r.)]

is computed for each part type, where

S Pr(Z _k;r.+l) 4.
E (Z;rj+l) =E Pr(Z _k) Pr(Z _k; r

k=l
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The maximum over j of A. is determined and the r.J J

corresponding to that maximum is increased by one. E'(Z)

is set equal to E(Z;rj+l) corresponding to this j. If

the new value of E(Z) is equal to or greater than AsS,

the procedure stops; if not, a new set of A. is computed

and the rj corresponding to the maximum over j of the

new A. is increased by one. The procedure continues in

this fashion until the value of E(Z) is equal to or

greater than A S.
s

2. Minimizing Cost Subject to a Required Probability
that at Least k Unit Systems are Up

Suppose that it is required that P{z > k} 2.

Pmin (k), and that it is desired to minimize the cost of

the expected on hand inventory needed to achieve this

probability. The general procedure for finding the optimum

vector (rl,...,rN) is the same as the E(Z) > ASS form

of the constraint with the following expections:

a. The initial r. values r are the

minimum values such that Pr(Z. > k) . min (k) and

Pr(Z Z kjrj) is concave in r. for r. > r*.

b. At each iteration A. is computed as

Pr{Z > k;r.+l}-Pr{-Z k. k; r.}

- C.[D(r.+1) - D(r) ]

As in the first form of the constraint the r. associated

with the maximum A. is increased by one at each iterationJ
until Pr(Z 2. k) > P. (k). Since Pr{Z > k} is just one

min
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term of the sum over k in the expression for E(Z), the

computational effort at each iteration is much reduced for

this form of ,the constraint, particularaly if the number

of unit systems S is large.

C. NUMERICAL ANALYSIS AND DEVELOPMENT OF FORTRAN PROGRAMS
I.

Two FORTRAN programs, one for each form of the constraint

have been developed and run for several sample problems on

the Naval Postgraduate School's IBM 360 computer. The pro-

grams are very similar, and both use identical versions of

the following subprograms: PSITAB, which computes a table

of values of (y;rj = -1) for j = 1,...,N; PRZJK, a

function subprbgram which computes Pr{Zj > k;rj}; EBO, a

function which computes the expected number of backorders

f6r part type j give that the reorder point is

PPT, a function which computes individual terms of the

Poisson probability mass ,function; and PCUMT, which computes

complementary cumulative terms of the Poisson distribution.

With the IBM 360 it.was found necessary to do the

arithmetic in double precision because the single precision

round-off errors for repeated multiplications were excessive.

The table of j(y;rj = -1) values was, however, stored

as a single precision array to conserve storage space. When

values from this table were needed they were converted to

double precision with the standard function DBLE.

Subroutine PSITAB stores the computed values of

4j(y;rj = -1) in an array called PI(J,K), where
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PI(JK) = i (k-l;rj = -1).

* The array size is (N,100), where N is the number of

different part types; however, for each J only values

of PI(J,K) for K less than or equal to KMAX(J) are

computed, where

KMAX(J) = min 100, largest K such that

PI(J,K) < 10-12

PI,(J,K), for K greater than KMAX(J4) are set to zero.

i For part types with low demand rates the number of values

of PI(J,K) computed is much less than 100. 'The array

size used in the programs permits handling demand rates

up to about 50 without significant truncation of the distri-

bution of Yj.

1. Program EZMIN

Program EZMIN computes the optimum r vector sub-

ject to a required minimum expected value of the number

unit systems up. The main program reads the input data,

writes the system parameters and the required availability,

and calls subroutines PSITAB, INITAL, and OPTIMR. Sub-

routine PSITAB computes the PI(J,K) array as discussed

above. Subroutines INITAL computes an initial set of rj

I values, r each of which satisfies the following

conditions: Pr(Z. = S;r.) a concave function of rj for

rj >_r*

S
E(Z.) =EI Pr(Zj > k;r) > A S.

k=1 3-
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Subroutine OPTIMR uses the marginal analysis technique

previously discussed to find the optimal r vector.
g.

2. Program PKSMIN

Program PKSMIN computes the optimum r vector I

subject to a required assurance that at least k out of

S unit systems are operational. This program differs from

program EZMIN--only in the following respects. PKSMIN Main

calls subroutine INTLZ instead of INITAL and subroutine

OPTMZ instead of OPTIMR. Subroutine INTLZ finds an

initial set of rj values r,...,r chthat Pr(Z.k;r.)

is concave for r. > r* and such that Pr(Zj > k;rf) 2. Pmin"
- s --

Subroutine OPTMZ computes the optimum r vector subject to

the required assurance that Z be equal to or greater than

k.

3. YFlow Charts

Flow charts for program EZMIN .are presented in

Appendix B. Flow charts for program PKSMIN are presented

in Appendix C.
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IV. EXAMPLE PROBLEMS AND DISCUSSION OF RESULTS

A. DESCRIPTION OF THE EXAMPLE SYSTEM

The example system consists of 50 106-mm recoilles

rifles, model M40Al. Several factors made this system a

convenient example. First, the total number of repair

parts is small enough so that the FORTRAN programs developed

for solution of the two alternate formulations of the prob-

lem can be used without modification on the IBM 360 G-level

computer available at the Naval Postgraduate School.

Second,, Department of the Army Technical Manual 9-1015-221-35

[Ref. 11] contains data from which failure rates may be

estimated. Third, actual demand data for a six month

period for 62 weapons used in training heavy weapons infan-

trymen at Fort Ord, California, were made available to 'the

author by the Fort Ord Post Maintenance Section. Finally,

price data were available from the microfilm Army Master

Data File Selected Management Data File (Ref. ).1].

The parts list in TM 9-1050-221-35 contains 287 different

Federal Stock Numbers (FSN). Of these only the 159 FSN

which were indicated as being combat essei._ial were used

for the sample problems. By limiting consideration to

only combat essential parts we insure that some of the

assdmptions of the model are more nearly satisfied than if

all part types were considered. For example, the model

assumes that for each part type j there is a positive

number b which is the minimum number of working parts of
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type j needed for the unit system to be capable of per-

forming its function. A part would not be combat essential

if bj were zero. Thus the assumption that the unit system

is a series of k-out-of-n structures and that the possible I'

states are zero or one is more nearly true if the unit

system consists only of combat essential parts.

The Federal Stock Number, the number of applications

'per unit system, and data for estimating failure rates

were obtained from columns 2, 4, &nd 6, respectively of

Section 2, Appendix B, Ref. 10.

B. SAMPLE PROBLEM 1 - REQUIRED EXPECTED NUMBER OF UNIT
SYSTEMS UP CONSTRAINT

The first sample problem was cOmputed for the required

expected number of -unit systems up ,orm of the constraint. I.

.-Table I lists a summary of the input data and res,!Ats for

this pr"oblem.

TABLE I

SAMPLE PROBLEM 1 - SUMMARY OF INPUT DATA AND COMPUTED RESULTS

NUMBER OF UNIT SYSTEMS 50

NUMBER OF PART TYPES 159

INPUT REQUIRED AVAILABILITY 0.95

DATA OPERATING LEVEL 1.0

ACTIVITY LEVEL 1.0

EXPECTED NUMBER OF
OPERATIONAL UNIT SYSTEMS 47.58

COMPUTED EXPECTED COST OF
ON HAND INVENTORY $418.04RESULTS ,

NUMBER OF ITERATIONS OF
MARGINAL ANALYSIS PROCEDURE 295
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The above data show that for the system consisting of

50 weapons with 159 part types and a required availability

of 0.95 program EZMIN computed an r vector with an

associated expected cost of on hand inventory of $418.04.

The computed value of E(Z) is 47.58, which indicates thai

the marginal analysis technique overshot the required

expected number of systems up by .08, since the required

expected number was 50 x 0.95 = 47.50.

Table II lists the input parameters and computed

results for each FSN. Parts are listed in Federal Item

Identification Number (FIIN) sequence, because they are

listed this way on the Army Master Data File (Ref. 11].

The FIN is the last seven digits of the Federal Stock

Number. The data cards were sorted into this sequence to

facilitate determination of unit prices. The columns of

Table II contain the following: j, the sequence numbier;

FSN, the Federal Stock Number; A = ai, the number of

applications of part type j on each unit system; B ='b

the minimum number of part type j needed for the nit

system to be up; C = Cj., the unit cost of part type j;

RHOHAT = j, the failure rate for part type j; RHO pj
A

Sajpj, the pooled demand rate for all parts of type j in

the system; TAU = Tit the procurement lead time for part

type j; Q = Qj, the order quantity; R = rj, the reorder

point; EB = B(Qj,r.), the expected backorders for part type

j; and EOH = D(Qj,r), the expected on hand inventory for

part type j.
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C. SAMPLE PROBLEM 2 - REQUIRED ASSURANCE AT LEAST K UNIT
SYSTEMS UP CONSTRAINT

The second sample problem was computed for the required

assurance at" least k unit systems are up form of the

constraint. Table III lists a summary of the input data

and results for this problem.

TABLE III

SAMPLE PROBLEM 2 -SUMMARY OF INPUT DATA AND COMPUTED RESULTS

NUMBER OF UNIT SYSTEMS 50

REQUIRED NUMBER OF UNIT 47
SYSTEMS UP

INPUT REQUIRED ASSURANCE 0.90

DATA OPERATING LEVEL 1.0

ACTIVITY LEVEL 1.0

PROBABILITY AT LEAST K 0.91
UNIT SYSTEMS ARE UP

EXPECTED NUMBER OF 47.46

COMPUTED UNIT SYSTEMS UP

RESULTS EXPECTED COST OF ON $387'.88
HAND INVENTORY

NUMBER OF ITERATIONS OF 348
MARGINAL ANALYSIS PROCEDURE

The above data show that for the same system considered

in Problem 1 with a ,required assurance of 0.90 that at least

47 unit systems are up program PKSMIN computed an r vector

with an associated expected cost of on hand inventory of

$387.88. The program overshot the required probability

by 0.01 since the computed probability is 0.91 and the re-

quirement was 0.90. After the r vector which met the
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constraint was computed- the program computed the resulting

value of E(Z), the expected number of unit systems up.

It is interesting to note that the expected number of unit

systems up very nearly meets the requirement of Problem 1,

and the expected cost of on hand inventory is also about

the same as for Problem 1. The computer execution time for

Problem 2 was about 19 seconds compared to slightly over

four minutes for Problem 1.

Table IV lists the input paramaters and computed results

for each FSN. The column headings are the same as for

Problem 1.

D. EX7ECTED OST OF ON HAND INVENTORY AS, A FUNCTION OF
REQUIRED AVAILABILITY

1. Expected Cost Versus Required Expected Number of
Unit Systems U2

Program EZMIN was run for ten values of As = 0.90,

...,0.99 in order to develop a functional relationship

between the first form of the availability requirement and

the expected cost of on hand inventory. Table V summaries

the results. In addition to the expected cost of on hand

inventory the table lists the number of iterations of the

marginal analysis procedure required to find a solution and

the number of reorder points which were less than-the mean

lead time demand for each level of A s  A reorder point

less than the mean lead time demand is equivalent to a

negative safety level. For many of these the computed order

quantity is one and the computed reorder point is minus one.
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This (Q,r) implies that the part is not stocked by the

maintenance unit but is ordered from the source of supply

as demands occur.

The data show that expected costs of on hand inventory

rise very steeply as the required level of As approaches

unity.

TABLE V

EXPECTED COST OF ON HAND INVENTORY VERSUS REQUIRED A
s

No. of
Negative

A No. of Safetys E(C) Iterations Levels

0.90 $16.80 31 156

0.91 $22.02 64 151

0.92 $38.14 67 143

0.93 $79.57 140 123

0.94 $168.64 141 104

0.95 $418.04 295 73

0.96. $645.76 238 41

0.97 $1225.36 359 19

0.98' $1619.00 322 7'

0.99 $2406.83 386 2

Figure 1 plots the expected cost of on hand inventory

E(C) as a function of A
s
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Figure 1. Expected Cost of on Hand Inventory E(C)
as a Function of Required Expected Fraction 'of
Unit Systems Up
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2. Expected Cost of On Hand Inventory Versus Required
Number of Unit Systems Up with an Assurance of 90
Per Cent'

Program PKSMIN was run for six values of k = 45,

...,50 at a required assurance of 90 per cent in order to

develop a functional relationship between the required value

of k and the expected cbst of on hand inventory at this

assurance level. Table VI summaries the results.

TABLE VI

EXPECTED COST OF ON HAND INVENTORY VERSUS REQUIRED
NUMBER UNIT SYSTEMS UP WITH 90 PER CENT ASSURANCE

No. of
Negative

No. of Safety
k E(C) Iterations Levels

45 $29.07 103 150

46 $84.97 102 122

47 $387.88 177 85

48 $1117.47 218 49

49 $2235.32 278 11

50 $3519.,92 303 0

Figure 2 plots the expected cost of on hand inventory

E(C) as a function of the required number k of unit

systems up with 90 per cent assurance.
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Figure 2. Expected Cost of on Hand Inventory E(C)
as a Function of the Required Number k of
Unit Systems Up with 90 Per Cent Assurance
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V. OBSERVATIONS AND CONCLUSIONS

A. OBSERVATIONS

1. Marginal Analysis may Produce only a Near-Optimal
Slution

The marginal analysis procedure presented in

Section III sometimes overshoots the optimum solution.

That is, the r vector found using the procedure sometimes

results in a higher than required availability and a higher

expected cost of on hand inventory than needed to satisfy

the constraint. This behavior of marginal analysis was

observed during the hand calculation of' the solution to

a small problem with four unit systems and four part types

where the constraint was E(Z) '- 3.6. Marginal analysis

yielded an E(Z) of 3.709 and an E(C) of $53.87. It

was possible, however, on the last iteration to achieve

an E(Z) of 3.:601 at a cost of $48.63 by increasing a

different r. than the one associated with the maximum

A j A dynamic programming procedure would overcome this

shortcoming, but dynamic programming rapidly becomes compu-

tationally cumbersome as the number of decision variables

increases. In the sample problems discussed in Section IV

there were 159 decision variables, and2in many possible

applications of tle model the number would be in the

thousands. Thus the simple marginal analysis procedure may'

be more computationally feasible than dynamic programming

for many applications of interest. Further, the relative
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differences between the optimal solution and the marginal

analysis solution tends to decrease as the size of the

problem increases.

2. Program PKSMIN is Much Faster than Program EZMIN

Sample problems 1 and 2 in Section IV resulted in

about the same values of E(Z) and of E(C). For problem

1 E(Z) was 47.58 and E(C) was $418.04. For problem 2

E(Z) was 47.46 and E(C) was $387.88. On the IBM 360

program EZMIN required over four minutes to compute the

results for problem 1, while program PKSMIN solved problem

2 in nineteen seconds. The reason for this difference is

that E(Z) a more complex function than Pr(Z ?ik). For

a given r vector E(Z) is the sum over k from one to

S of Pr(Z Z k). A comparison of the JMAX segments of

subroutines OPTIMR and OPTMZ shows that OPTIMR requires

more computations at each iteration (See Flow charts B4a

and C3a.)

3. Functional Relationships of Expected Cost Versus
Bemired Availability are Readily Obtained

The functional relationships of expected cost of

on hand inventory versus availability discussed in Section

IV were obtained by simply adding a DO loop to the two

main programs. Thus for E(C) Versus As  the value of

A was initially set to 0.89, and at each iteration of the
S

DO loop A was increased by 0.01 for ten iterations.
5

Similarly for E(C) versus k at the 90 per cent assurance

level k was initially set at 44 and incremented by one

at each iterations for six iterations.
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Using the functional relationships of E(C) versus.

availability we can estimate the maximum availability which

can be achieved if there is a constraint on E(C). Suppose,

for example, we, desired to maximize A subject to E(C)
5

< $1000.00. From Table V in Section IV we see that the

maximum A would be between .96 and .97. To determine
s

maxiium A more precisely and to determine the associated
s

r vector we could run program EZMIN for a series of values

of As, say .961, .962, ... , .969. The resulting E(C)

for one of these As values should be very close to

$1000.00.

Computing time in developing the E(C) versus avail-

ability functions can be conserved if at each iteration

after the first the starting values of the r. are the

final values computed on the previous iterdtion. This can

be: accomplished if the initializing subroutines INITAL and

INTLZ are skipped on the second and subsequent iterations.

This technique reduces the computing time to about hialf

that needed if the initializing subroutines are called at

each iteration.

B. CONCLUSIONS

1. Advantages of the Model

The model provides the first technique of which

the author is aware. for explicitly taking into account

system availability in the determination of continuous

review inventory policies for repair parts. The model

allows for variable safety levels and yields a set policies
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where the ratio of marginal availability to marginal cost

of inventory investment is approximately the same for all

part types. The result is that the model tends to favor

low-cost, high-demand items with relatively high safety

levels. High-cost, low-demand items are less well protected.

All items are, however, well enough protected to-insure,

under the assumptions of the model, that the availability

requirement will be met.

Compared to models which might more realistically

represent the "real world" the one presented here possesses

the advantage of computational feasibility. Programs

EXMIN and PKSMIN produce solutions in a reasonable amount

of time. Refinements in the programming could probably

improve run times.

2. Limitations of the Model

The limitations stem primarily from the assumptions

which were made for the sake of mathematical simplicity.

For example, the constant lead time assumption is not

usually true. Lead times can have considerable variability.

Le. time variability will tend to decrease the actual

availabilities achieved compared to those predicted by the

model. On the other hand the model does not consider

the fact that requisitions for parts which are causing a

unit system to be down have a higher priority and thus a

shorter lead time than normal replenishment requisitions

This fact will tend to make achieved availabilities higher

than those predicted.
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The optimal cannibalization assumption is seldom

completely true. The significance of this assumption

decreases, however, as the required availability increases,

since at higher availability levels we expect fewer back-

orders and therefore fewer occasions for cannibalization.

The significance of the assumption of zero or one states

for unit systems will depend upon the stringency of the

serviceability criteria used to determine whether a unit

system is up or down. The more stringent the criteria,

the more parts will have bj equal to aj. Parts with

bj equal to a. will generally be better protected than

parts with bj less than a.. The most stringent criteria

-possible would be that every parr on the unit system must

be working if it is to be counted as being up. Thus we

can see that the inventory policies computed by this

model and the resulting expected costs of on hand inventory

are highly dependent upon the serviceability criteria tor

the unit system.

* The assumption that parts are replaced immediately with

zero lead time-makes it necessary to correct the avail-

abilities computed by the model for down time due to finite

time to repair.

3. Uses of the Model

The model was developed for use in determining

direct support inventory policies for repaire parts for a

given population of a particular major item.
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Another use which suggests itself is determining

optimal maintenance floats. Suppose it were required that

at least k unit systems be up with probability .90.

Assume that the capability of the maintenance unit to make

repairs, given that needed parts are availableis fixed.

Then the probability that k unit systems are up is

determined by the total number S of unit systiems and

the inventory policies for repair parts. The quantity

S - k is called the maintenance -float. An interesting

problem is determining the optimal level of the maintenance

float. The model presented in this thesis could be used to

estimate the optimal float level as follows. Compute the

expected cost of on hand inventory needed to assure with

probability .90 that k unit systems are up with .2eroi one,

two, ... unit systems in the maintenance float. Then .choose

that level of maintenance float which minimizes the sum of

the cost of the float plus the on hand inventory.

4. Extensions

A number of possible extensions of the model

appear to be worthy of investigation. For example, relax-

ation of the assumption that all unit systems are identical

would be useful. A next higher level of complexity of the

system would be one in which there are two types of unit

systems. For example, one type of unit system might be a

particular type of weapon. The other unit system might be

a piece of fire control equipment which controls the fires,

of several weapqns. If a fire control unit is down all the
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weapons it controls are also down. Application of the

approach of this model to optimal inventory policies for

such a system seems to offer interesting possibilities.

In any case it is hoped that the model presented here

will prove useful in the development of system availability-

oriented operating policies for military repair parts

inventories.

7
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APPENDIX A

CONVENXITY CONSIDERATIONS

In order to insure the optimality of the r vector

found using the procedure outlined in Section III it is

necessary that the cost function be convex and that the

region in r-space defined by the constraint be convex.

1. The Cost Function

The bjective function in the model presented in

this paper is the expected cost of on hand inventory,

which is given by

N
D(C) E C.D (Q-"3rj)

j=l 3

Since the Q. are fixed by the operating level of supply

policy as desvribed in Section III, we are concerned

only with convexiity with respect to the r, j =i

Further, since t2(C) is a sum of terms each of which is

a function only of rj, E(C) is convex if each Dj(Qj,rj)

is convex. Since Qj is fixed let us drop it as an argu-

ment; also let us fix j and drop the subscript. Hadley

and Whitin (Ref. 8, p. 184] show that

D(r) (Q + 1)/2 + r + B(Q,r),

where B(Q,r) is the expected backorders, given a (Q,r)

policy. D(r) is linear in r except for the B(Q,r) term.
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Thus D(r) is convex if B(Q,r) is convex in r. Again,

since Q is fixed, let us drop it as an argument. Hadley

and Whitin (Ref. 8, p. 184) show that

00

B(r) =(1/Q) E y (P (y+r4-lni) - P (y+r+Q+1; p)l
Y=Q

Let

A rB(r) = B(r+l) - Br,

and

A 2B(r) = A B'(r+l) - A B(r).r r r

D(r ) is convex if A 2B(r) .0 for all r. Since the par-r

amdter pis fixed for fixed j, let us further simplify

the notation by letting

Further, let

B*(r) =QB(r).

Then D(r) is convex for r >r* if A 2B*(y-) 0 for allr

r z. r*. Now

AB*(r) E -Pyr2 P(y+r+Q+2

Ar -= 0 P(y+r+l) + P(y+r+Q+l

E y y[p (y+r+Q+1) -p (y+r+l)]
y=l
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Note that we nave dropped the term for y =0 since it

* contributes nothing to the sum.

Now

-2B() ' ypyrQ2 - p(y+r+21
r Yr - p~ LP(y+r+Q+1) + P (y+r+il

= E y[Ap(y+r+Q+1) -Ap(y+r+l)J

y=1

where

tAp(x) =p(x+l) - p(x)

11 (x+1) e~ -P-A e -P

(x+1) I x!

Thus

co
A 2B*(r) = Y[, y[ -rQ-2 (Y+r+Q+)2Jy-r-2 p(y+r+1)]

ry=1 y+r+Q+2 Py+r+2P

Y[ pYyr+2-ii y+r+Q+2-11 (y+r+Q+2)

(r-j) -~+ P(Yr+) r+Q+ 2

r+3 pr 2  (r+Q+3 prQ2

+ r+4-(r) (r+Q42

2r+4-i p(r+3) 2 2(r+Q+4-i) p(r+Q+3)

+(Q+1) (r+0)p(r+Q.2)-
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Q-1 
c-,yr+y+ 2 _~I E r+y+2-oYryy+y+2 ry+ 2 ,Jp(r+y+l).

y=l y=Q rY

Now every term in this series is non-negative if r > g-3.

Thus D(r) is convex in r for r = -3. Furthermore,

numerIcal, calculations show that for values of V up to

40 that if Q ?. V-.5 then D(r) is convex for r>_ -1.

This numerical result is probably due to the fact that the

mode of the Poisson probability mass function is approxi-

mately p -1, which means that the most negative values

of (r+y+2-ui,/(r+y+2) in the series are multiplied by

small values of p(x;p). When r 2. -1, all terms in the

series for y L_ p - 1 will be positive. Thus it is

likely that the sum of the positive terms in the Series

is greater than the absolute value of the sum of the terms

for which y 4 1 - p is negative.

Thus, as far as the cost function is concerned, we can

be sure that the function is convex in r for all

r L_ _ -3, where -' = 1i' .. JN' and we have reason to

believe the function is convex for r > - 1 when Q j-.5,

j = I,.. .,N.

2. The Constraint Function

The two alternate forms of the constraint functions

are, first, a required expected number of operational unit

systems, expressed by

S N (Saj-kb.)
E II Z '. y.;r) L AsS

k=l j=l yj=O J J
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and second a required probability that at least k unit

systems are operational, expressed by

N Sa.-kbj.11 Sa-k '.(y;r) = (k)

Jj=l yj=0 3 i

If the constraint region is to be convex, the above func-

tions must be concave functions of r = (rl,..."rN). Note

that the left hand side of the first constraint is' the sum

over k of terms of the same form as the left hand side

of the second constraint. Thus if we can show the con-

ditions for concavity of the left hand side, of the second

constraint for a general k, we can easily show the

conditions for concavity of the first constraint.

The difficulty in showing the concavity of the second

form of constraint is that it is not a separable function

of the r.. It can be transtormed into a separable function

by taking the logarithm, in which case it becomes a sum of

terms, each of which is a function of only one rj, i.e.,

N
ln(Pr[Z L,k)] = l in[Pr{Z. k}],

j=l

where

Saj-kbj
* Pr{Z. Z T (yj;rj).

y j =
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Let

N
f(r) = Pr{Z > k;r, = 11 fj(r.),

j=l I

f (r.) =Pr{Zj > k;rj1,

f(r) = in f(r),

(r = in fj (rj).

Now it can easily be shown that if f (rj) is concave,

j (rj) is also concave, and thus f(r) is concave. Un-

fortunately, the concavity of (r) does not imply the

concavity of f(r). Now consider

Saj-kbj
fji(r ) = T j(yj;rj).

yj=0

Le;t

M =Sa - kb.,

then

f.(rj) = Tj (O;rj) + ... + Tj(M;r).

In section III we showed that

rj+lSj(0;rj Z j(y+;-l),

J yj=o 3
%J

Tj(yj;rj) = -j(yj + rj + 1; - 1), yj > 0.
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Thus we have

f.(r) Z T i'(u;-l) E 7 (iyj+r.j+l; -1)

M+r*+l

u=O

Now let

A. f.. f f(r.+l) f f(r.)

then

M+r.+2 M~r.+l
E T~.. '(u;-l) E T (u-l

u=O u=O

TP (M..r .+2 ;-l).

Let

A 2 f. =,A f(r.+l) - A f(r.).

then

A 2 f T 1 (M+r+3; 1) - TP.(M+r+2;-!)

[(Mrj+3) - P(M+Qj+rj+3]

P(AM+r+2) - P(M+Q+r+2)

-(l/Q) [p(M+Q+r+2) - p(M+.r+2)]

Now f. is concave for all r. L rt if the expression
J J- J

in brackets above is _0 for all r. > rt. Thus we seek

rt such that for all r. rt
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p(M+r.+2) L p(M+Qj+rj+2)

or

11 (M+r j+2) e-11 > 11j (M+Q j+rj+2) e-
(M+r j+2)! - (M+Qj+rj+2)!

or

Qj (M+r.+Qj+2) !
- (M+r .+2)!

J

The right hand side of the above inequality is an increasing

function of rj, Qj, and M. It is usually true that the

operating level .licy used within the Army is at least as

many days of supply as the procurement lead time. This

means that Qj > uj. Assume this is true. Now if k = S

and a. = b., then M = 0. If fj(rj;k=S) is concave,

f (rj;k<S) will also be concave-, since if the in'equality

holds for M = 0, it will hold for M>0. Let M = 0. Then

the inequality becomes

Oj < (r.+QJ+2)!

(rj+2)!

For example, if r. = - I and Qj = 1, then Pi must be

equal to or less than 2. In other words, for uj < 2, fj(rj)

is concave in rj for all r. 2-1, Q 1, and k:S.

To insure the concavity of f. (r.) for ji > 2, in the

FORTRAN program for the E(Z) = A sS form of the constraint,
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the subroutine INITAL finds an initial set of r. such that

the concavity conditions for k= S are satisfied for rj

equal ito or greater than the initial r. Similarly, in

the FORTRANd program for the Pr(Z=k) = Pmin form of the

constraint, subroutine INTLZ finds "an initial set of r.~3

K; such that each PrtZ. = k; r.) is a concave function of

r. for r. equal to or greater than the initial value.J3

The solution procedure employed in the computer programs

thus insures that each f. (r j) is concave in rj in the

region that the marginal analysis procedure, searches for
N

an optimum. The question of the concavity of f(r)= i f.(r)
j_1

remains open. To date the numerical results 'have not inid-

cated that there is a problem, i.e., the numerical results,

are quite reasonable. No proof, however, of the- concavity

of f (r) has been found.
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APPENDIX B

FLOW CHARTS FOR FORTRAN PROGRAM EZMIN

FORTRAN program EZMIN was developed to solve the problem

of finding the vector r which minimizes the expected cost

of on hand inventory subject to a required .expected number

of unit systems up. This appendix contains flow charts for

the main program and the following subprograms:

Subroutine PSITAB, which computes a table of values of

PI(J,Y) for j = 1,...,N, and Y = l,...,i00, where

PI(J,Y) = ,(Y-l;r, = - 1)

Subroutine INITAL, which computes a set of initial

values of rj, such that E(Zj) _ E(Z)min' j = 1,...,N.

Subroutine OPTIMR, which uses a marginal analysis tech- t
nique to find an optimal r vector.

Function PRZJK, which computes Pr{Zj =k; r.}.

Function EBO, which computes E(Yj; rj).

Function PPT, which computes individual terms of the

Poisson probability distribution.

Function PCUMT, which computes complementary cumulative

terms of the Poisson probability distributioi.
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START

READ: S = NO. OF UNIT'SYSTEMS
N = NO. OF PART TYPES
AZ = REQUIRED AVAILABILITY
OL = OPERATING LEVEL
ALEVEL = ACTIVITY LEVEL

WRITE: S, N, AZ, 0L, =LEV E

READ: a., b., C.,Tpf S.

j 1

p. La~p

Q. = nax{[Ii. + .5], }

J PSITAB

OMPUTATBLE OF PI(j,k) = .(k-l;r. j= -1)

FOR j = l,...,N; k 1l,...l100

Figure BI. Flow Chart for EZMIN Main Program
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aL

INITAL

COMPUTES INITIAL(Zr.,j 1,...,NSUCHl THAT
R =( AZ*S AND Pr(Zj~ S;rj) IS CONCAVE IN r

CO.MPUTBS r VECTOR SUCHI THAT
E (C) IS MINIM1ZED, SUBJECT TO E (Z) =AZ*S

STOP
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START

- -- 60- - - -

J +- 1,N

KMAX(J) =J00

Q Q>1 yes

I 30~
I------------ K _1,100

:>KMX yes

[P PI(J, K) =0.

I I no

I I PI(J,K) =p(K-1;.)

I I J~J

eI K I
an PIJK

I MA (J I 01

Figure B2. Flow Chart for Subroutine PSITAB
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SUM =

IH =Q :

1, IH

FiUre SUM Continued

PI(Jl) -84 /



:START

20lN

r. 1

P 0  Pr (Z. S; r = -)

P1  Pr (Z. S;r. 0)
P 2 =Pr (Z. S;r. 1)

Irno r.=r+ +

L ~ --- ---- :5042

RETUR 1N

5



COMPUTE Pr(Z .k) H I Pr(Z. .k;r.

k=l

COMPUTE EB. EBO(r. E y'(YY;r.) j 1= .. I
y-l

COPUEDTCOST. C C(1 + EBO(r +1)- EB.) j =1I...-IN

ITER =0

E(Z~r.+) - yes)

andZ

E(Zr.+) +1 Pr( Z)

kS Pr(Z.>k;r.)

set E(Z) =E(Z;r.ja + 1)

(See Figure B4a for details of this block)

Figure B4. Flow Chart for Subroutine OPTIMR
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COMPUTE Pr(Z=k) =P(Z>k) jmaZrna kmax

FORz k =

jmax jmax)

jma 3max axmx

E(Z)> no

AZ *S

yes

COMPT E EOH. =[(Q.+1)/2 + r. + EB. - I. j- l= .. I

'N
E(C) E C C*EOH.

WRITE: ITER, E(Z) , E(C),

(FSN., a., bit C., p., p., Tj, Q., r.,

EB., EOH., j = ,...,N)

RETURND

Figure B4. Continued
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511
- -- -- - - J+- 1N

EZTRY = Q.DOO

K M

PKNEW_ (rZK)Pr(Z.i>K) + PI(JT,KM)]/Pr(Z.>K)

508 E- RY= EZTRY + PKNEWF

DELTAJ = '(EZTRY E I(Z')/DTCOST-

DHOLD =DELTAJ

J MX

EZSAVE = FJZTRY

Figure B4a. Flow Chart for JMAX Segment of OPTIMR
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KHI =SA. kb. + r. + 2

IKY + 1, KHI

IPRZJK =PRZJK + PI (J2,KY)

L~.. - - 10

RETURN

Figure B5. Flow Chart for Function PRZJK
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START

EBO 0

K =Y + r. + 2

EBO EBO+ Y*PI(J,K)

* Figure B6. Flow Ch&rt for Function EBO
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START

PPT =DEXP (-MU) n

RETURN PPT =DEXP (-MU)

PPT =PPT*MU/DFLOAT(lI)

RETUJRN

Figure B7. Flow Chart for Function PPT
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STAR

MU =RHO*T

SUM = DEX((-MU

PROD-= SUM

I1, IHI

PROD =PROD*MU/DFLOAT (I)

I SUM =SUM + PROD

Figure B8. Flow Chart for Function PCUMT
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3APPENDIX C.

FLOW CHARTS FOR FORTRAN PROGRAM PKSMIN

FORTRAN program PKSMIN was developed to solve the prob-

lem of finding the r vector which minimizes the expected

cost of on hand inventory subject to a required probability

that at least k unit systems are up. This appendix con-

tains flow charts for the main program and the following

-subroutines:

Subroutine INTLZ, which compute a set ofpi't'a- values

of r. such that Pr(Zj L k) L P(Z . k) j-, .oN.

Subroutine OPTMZ, which uses a marginal ..a)Lydtch-

nique to find an optimal r vector.

Program PKSMIN also .uses subroutine PSITAB and function

subprograms PRZJK, EBO, PPT, and PCUMT, flow charts for

which are in Appendix B.

I
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READ: S = NO. OF UNIT SYSTEMS

WIE5,S,PKSMIN , =OLQURE ARE

READ: a., bit C., p., t., FSN., j = 1 1-

j~lN

I~ p = ta~p
~pj j

I i"j = pTi

Q . = {max [Vi + .5], 11

PISTAB

COMPUTES TABLE OF PI(J,K) =, i (k-l;r. = 1)

FOR j = l,...,N; k =1,...,100

Figure Cl. Flow Chart for PKSMIN Main Program
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a

INTLZ

COMPUTES INITIAL rill? ... =

SUCH THAT Pr(Z.>1k:r.) > PKSMIN

'AND Pr(Z;>KS;r. IS CONCAVE IN r.

COMPUTES r VECTOR SUCH THAT E(C) IS

t MINIMIZED SUBJECT TO Pr(Z>K) > PKSMIN 

STOP-

Figure Cl. Continued
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[ START

20
'I J 1,N

I r. =-1
I~ P0 = Pr(Z;>KS; r.=-)

IP = Pr(Z. I KS; r. = 0)
1JI = Pr(Zj > KS; r. = 1)

2 1 1,2

Figurep 22 Flo ChartIKS fo Suruin
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START

N
COMPUTE P(Z>KS) H I Pr(Zj>KS)

j=l

COMPUTE EB. EBO(r. = E yT j (y;r.) j=

COMPUTE DTCOST; C C(1 + EBO(r.+1) - EB.),j 1 .. f

Find: max {*: A. = 0nxA}

<r Z K~ 
. I - P( >ys )

aind: Pr(Z .>KS: A +1)

Pr(Z>KS~r+.I, Pr(Z>S)

st Pr(Z>KS~r) = Pr(Z>KS . +1

set r(Z>S) P(Z>K; rjmax+

(See Figure C3a for details of this block)

Figure C3. Flow Chart for Subroutine OPTMZ
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Pr (Z ja > KS) =Pr(Zjma> KS ;rjma+1)

jmax jma maxm

DTCST = . 1+BOr +)-
jiax jmax ja ia

COMPU1TE EQII (Q+1)/2 + r.i + EB. - ' t=],.

S N

COMPUTE E(Z) Z HI Pr(Z. k)
k=1 j=1

WRITE: ITER, P(Z>KS), E(Z), E(C),

(FSN., ai, b.l C. p., Pit, T., Q., R.

EB., EOH.-, j 1, N

Figure C3. Continued
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511
J -(- 1,N

PKSTRY M Pr(Z>K- [Pr(Z.K+PIr.M + 3 Z.KS

esPr(. S

JMAXAX(J

PKSTRY PZKSV[=PZKS)JN)It~(j>S

Pr(Z> [KS) = PZKSY TOS
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